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This paper presents two unsteady difference schemes for one-dimensional steady-state shock 
solutions starting from the pseudo-unsteady equations. The so-called explicit upwind scheme 
is actualiy an explicit forward-time, centered-space difference scheme with an appropriate 
artificial viscosity term, which depends on the directions of the characteristics. This scheme. 
considered as an iterative scheme, has good convergence properties, and leads to steady-state 
numerical shocks, each with at most one point of transition. regardless of the position of the 
shock with respect to the mesh. The mesh can be refined iocaiiy and computation continued 
locally to make the profile of the shock sharper. To increase the rate of convergence. the 
corresponding implicit scheme is presented. Results of numerical tests for a shock tube and a 
convergent-divergent nozzle arc given. 

I. I~~TR~OUCTI~N 

There are generally two types of finite difference methods for the solution pi 

steady-state problems: the iterative methods and the unsteady methods. For some 
problems, fast convergent iterative schemes are available.But for many complicated 
problems, effective, or even just convergent, iterative schemes are very difficult to 
find. For these problems it is natural to follow the true physical process and solve the 
time-dependent problem, whose asymptotic solution is the desired steady-state 
solution. But as the entire time-dependent process is found, the amount of work 
involved can be considerable. So quite often some requirements are relaxed in the 
time-dependent process. For example, it is only necessary for the difference scheme to 
be consistent with the original equation in the steady state, and to reduce the amount 
of work, one can use unsteady equations with different physical meaning from the 
original one, or even use unsteady equations which have no true physical meaning at 
all, see, for example, [l-3 1. 

Time-dependent difference methods for discontinuous solutions are divided into 
two categories: the shock-fitting methods and the pseudo-viscosity methods. With the 
former, one can obtain shocks with sharp profiles, but the programming can be very 
complicated. With the latter, one can capture shocks with one uniform difference 
scheme, but usually either smearing or oscillation occurs in the vicinity of the shocks. 
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There are uniform schemes which give “sharp” shock profiles, for example, the 
Glimm scheme (see Chorin [41), resulting in shock profiles with no point of tran- 
sition, and the one-sided schemes of Engquist and Osher [5], yielding steady-state 
discontinuities with two points of transition. Also MacCormack et al. (61 used a 
uniform scheme for the solution of flow around an arbitrary blunt body, where a 
sharp profile shock was obtained. However, with the MacCormack scheme, it is 
necessary for the shock to be midway between two neighboring mesh points, 
otherwise oscillation will result. For steady-state shocks, smearing or oscillation of 
the numerical result is often caused by the steady-state difference equation itself and 
not by the unsteady method used to solve it. This has been observed by, for example, 
Crocco [ 11, and Roache 17, p. 1611. It is along this line of reasoning that the author 
presents difference schemes which yield “clear” steady-state shock profiles. A “clear” 
profile means a profile of numerical discontinuity with at most one point of tran- 
sition, regardless of the position of the discontinuity with respect to the mesh. These 
schemes are presented with the intention of contributing to the whole effort of 
obtaining sharp shock profiles with uniform schemes. 

The present author made a study in [SJ of the rate of convergence of unsteady 
difference schemes considered as iterative schemes for steady-state problems, with a 
one-dimensional linear hyperbolic equation with constant coefficients. By fixing the 
mesh, the correspoonding matrices of the unsteady schemes were studied; the matrix 
properties determine the convergence. (In this paper convergence always means 
iterative convergence.) Several schemes commonly used for fluid dynamics problems 
were considered. Because these matrices are quite different in nature from those 
obtained from schemes for the numerical solution of second order elliptic equations 
and because their complete analysis is difficult, it is required, at least, that the 
schemes, considered as schemes for pure intial value problems, be stable. 

A part of the results of [8] is that for a first order hyperbolic equation, the explicit 
upwind (upwind means a scheme which depends on the directions of the charac- 
teristics) scheme converges faster than the Lax-Wendroff scheme; and that the 
implicit upwind scheme converges very fast for large Courant numbers; it converges 
faster than the Crank-Nicholson scheme with the equivalent steady-state viscosity. In 
181, the author also discussed unsteady schemes for steady-state discontinuous 
solutions of the nonlinear model equation. It was found that the upwind schemes 
yield steady-state discontinuous solutions with clear profiles. 

This paper extends some of the results of [8] to the case of steady-state discon- 
tinuous solutions of one-dimensional fluid dynamics problems. The equations used 
are those which Denton 131 called the pseudo-unsteady equations. These equations 
have led to some very good results in the calculation of steady-state cascade flow 
through turbomachinery, see also 191. After establishing some properties of the 
pseudo-unsteady equations, the explicit upwind scheme will be constructed and 
discussed. This scheme has good convergence properties and leads to steady-state 
numerical shocks with one point of transition. It lacks certain other important 
properties; for example, in contrast with the Engquist and Osher schemes, it is not 
monotone. But given suitable initial values, it will lead to the physically relevant 
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solutions, as does the Lax-Wendroff scheme. Numerical results, which are given after 
a brief statement of the boundary conditions, verify this. The corresponding implicit 
scheme will also be discussed; its simplification follows that of Beam and Warming 
1 101. but the scheme is “full” implicit and not of the Crank-Nicholson type. With the 
implicit scheme. the same results as those with the explicit scheme are obtained, but 
the convergence is faster. 

2. THE PSEUDO-UNSTEADY EQUATIONS 

Let us consider the following one-dimensional pseudo-unsteady equations: 

CyJmS) + c?@u2S) ‘I 
2t 8X 

&Lo, 
%x 

h+c=const.=H. 

(2.1) 

(2.2) 

(2.3) 

where 5’ is the cross-sectional area of the one-dimensional flow duct, U? p. p, h are, 
respectively, the velocity, density, pressure, and enthalpy of the gas. (2.I), (2.2), (2.3) 
represent, respectively, the unsteady conservation of mass, unsteady conservation of 
momentum, and the steady-state relation of constant total enthalpy. From the 
equation of state, we have 

(2.4) 

where R is the gas constant and ‘/ is the specific heat ratio. So we have simply a 
system of two equations for two unknowns, p and U, which is simpler than the system 
of three true unsteady equations for three unknowns, 

It is easily seen that the steady-state shock conditions for the pseudo-unsteady 
eqtiations are the true steady-state shock conditions. 

(2. l), (2.2) can be written as 

where the right hand side does not involve partial derivatives of the unknowns. 
Denote the above matrix by M, its eigenvalues are 

A = (Y+l)ufs - + 27 ' 
:2.5 j 
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where s = ((y + 1)’ U’ - 4y(u2 - o’))“~, and a is the sound speed (=(yRT)“‘). 
Because s is real and #O, 1, are two distinct real numbers, so the system is hyper- 
bolic, and dx/df = 1, are the characteristic directions. When u < a, one is positive, 
one negative; when u = a, one is positive, one zero; and when u > a, both arc 
positive. 

Following the derivation for the matrix properties for the unsteady fluid dynamic 
equations, see Steger Ill) and Warming et al. [ 121, we arrive at similar matrix 
properties for our pseudo-unsteady equations. First of all, we obtain a non-singular 
matrix T such that 

M= TAT-‘, 

with 

i 

1 1 

T= (1 -y)u+s (l--)u-s * - i 
\ 2YP 2YP / 

Now write (2.1), (2.2) as 

where 

Let 

we can easily see that 

Now let 

F=AU, SG = SBU. 

C=A +SB; 

(2.6a) 

(2.6b) 

(2.7a) 

. (2.7b) 

; (2.8) 

(2.9) 

(2.10) 
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we can obtain 

where 

(2.1 ia) 

TX 1 0 c ) u P' 

From (2.6), (2.1 l), we get non-singular matrix Q = TT such that 

C = QAQ-- ‘. 

These results will be used in the following sections. 

. THE EXPLICIT UPWIND SCHEME 

(2.1 !b) 

(2.12) 

For the simplest linear hyperbolic equation 

g+;zo, (3.1) 

the explicit upwind scheme is 

u; + ’ =ru;-, + (1 -,)I(, (3.2) 

where I = At/Ax. Suppose we solve the equation on 0 <X < 1, t > 0, with the 
following boundary and initial conditions: 

u(0, t) = 0, (3.3a) 

u(x, 0) = u,(x), (3.3b) 

with 1(,,(x) given. Divide the x interval into J equal parts, so JAx = 1, then we may 
write 

CT”-’ = C,U”, (3.4j 

where li” is the vector with components u;, j = 1, 2,..., J, C, is the J dimensional 
tridiagonal matrix (r, 1 - r, 0), where we let J be fixed. Its eigenvalues are obviously 

ah; = 1 - r. (3.5) 

For the Lax-Wendroff scheme with the additional boundary condition u(!, 1) = 0. 
C, = (r/2 + r2/2, 1 - r2, -r/2 + r2/2), with dimension J- 1. Using 

det(a, 6, c) = 0 o b = 2(uc)“* cos ‘$, j = 1, 2,...,J - 1, (3.6) 
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see (131, we obtain for the Lax-Wendroff scheme 

a I.W = 1 - r2 + ir( 1 - r*yi2 cos I$, j= 1,2 ,..., J- 1. (3.7) 

For large J, jaldwlmax - (1 -Y’)“‘, so for 0 < r < 1, ]a,] < ](I~~],,,~~. We see that the 
asymptotic rate of convergence for the explicit upwind scheme is higher than that for 
the Lax-Wendroff scheme. For further discussion and for comparison with other 
schemes, see [8], where also the behavior of ]]C~]], is studied, especially for other 
boundary conditions. 

For the nonlinear model equation 

(3.8) 

consider the following upwind scheme: 

ui”*‘= u; - d.fi”+ l/2 - fj”- l/J9 (3.9a) 

where 

fj”+ 112 = w+ I )*/z 

= w+ ,12/2 + @4YW, 

= (2#/2, 

if u;+,,~ < 0, 
if UT+ y2 = 0, 

if 147, y2 > 0, 

(3.9b) 

u;+ 112 = (uy+, + u,“)/2 and q = At/Ax. If uJ’+ 1,2 < 0 always (or > 0 always), then we 
have the usual one-sided scheme. Note, for smooth solutions, sy = uj” - u, satisfies the 
linear equation (3.2), with r = uq, so the convergence of the scheme is as above. Also 
the corresponding steady-state equation of (3.9) admits steady-state discontinuous 
solutions with clear profiles, and numerical experiments show that (3.9) leads indeed 
to such solutions, see [8]. 

(3.9) can be written as 

U/ n+‘+!- & (f;+I -f~-l)+i$$ Iskn(uj”, ,,2>U;n+ I -f/“> 

-sign(UJ!-1,2>(fi” -fi”-l)l, (3.10) 

where pAt 1 dx2 = At (2Ax. For pseudo-unsteady equations (2.7), we wish to construct 
a corresponding scheme. But what should the sign(u) = sign(df/du) for one equation 
be for a system of equations? It should be something like sign C, where 
C = aF/aiJ + S(aG/HJ) = A + SB. Considering (2.12), we define sign C as: 

signC=Q(signn)Q-‘=Q e-1. 
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Using (2.6) (2.1 l), we get 

sign C = 
1 0 c 1 0 1 ’ 

i 

0 y/o+ 1)u = 
0 1 1 ’ 

if A,>O,i >O, 

2c1 

if i- > 0,;. ~0, (3. i i) 

1 -(y+ l)u 2y =- if i->&I CO. 
s c 2(a2-u2) 1 (y+ 1)u ’ 

Corresponding to (3. lo), we have now the following scheme: 

4 + 1 (sign CJnL ,,,* j (Fj”+ , -Fj”)+ Sj.e,.2(G;-,-Gy)l 

- sign Cj”- ,,,[(Fj” -FT. ,) + Sj-l/z(G; - Gy. I)]). (3.12) 

Let EJ’ = q - ii/, for smooth solutions, 15’; satisfies 

q .I = Ey - + C(Ej”? , - E,?- ,) + % (sign C) C(E,“+ , - 2E,” + E; ;), 

where higher order small quantities and lower order differences have been neglected 
and the coefficients have been taken locally as constants. Let V= Q--l.!?; then 

Note (sign/1)n = (I$+ ,i ,), so we have two separate upwind difference equations. 
As an iterative scheme, with appropriate boundary conditions, convergence is as 
above. We will not go into the problem of general boundary conditions here, The first 
variational equation of (3.12) is of the same form as that of EJ’, so stability of (3.12) 
as an evolutionary scheme for pure initial value problems, is ensured if A+ (I < 1. 

The corresponding steady-state scheme of (3.12) is 

(I- sign Cj+ dI(Fj+ 1 -Fj) + Sj b ,,,(Gj+ 1 - Gj)I 

+ (I + sign C, L,z)[ (Fj - F.i- I) + Sj- I/z(G/ - Gj- I)] = 0. (3.13) 
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Let the flow be from left to right, and A4 be a point as shown in Fig. 1, with uj,,- ,jz 
supersonic and u,,+ ,,? subsonic. Suppose 

(Fj-Fj..,)+S,_,,,(Gj-Gj_,)=O, j - lJ#j,w, (3.14a) 

V’N - F,) + S,m(G, - G,,) + VT+, - LA+ S,,(G.w - Gd = 0 (3.14b) 

hold (S,+,, denote the value of S at the midpoint between M and R, S,,,w likewise). WC 
will show that (3.13) admits discontinuous solutions with clear profiles. When point 
M is not involved, (3.13) holds because of (3.14a). When M is involved, we examine 
the three sets of points, (I,& M), (L,M, R), and (M, R, E) in turn to see what 
conditions other than (3.14) are necessary for (3.13) to be valid. For (I, L, M), we 
have sign Cj+ ,,2 = sign Cj- v2 = I, (3.13) becomes 2[F, - F, + S,L(G,~ - G,)) = 0, 
which holds due to (3.14a). For (L, M, R), sign Cj_ ,,z = I, (3.13) becomes 

U - sign C,,,,)IF~ - 6, + LAG, - G>w)l 
+ 2h - f’,. + S,..w(G,+, - GJJ = 0. 

Using (3.14b), we arrive at 

(3.15) 

LB fl m 

2.0 1 

I.0 

L IL 

I 

“: @ Jz .@ .z 

FIGS. 1-3. (1) Point of transition. (2) Shock tube MacCormack scheme (n = 256, E = 0.5 X 10 .‘). 
(3) Shock tube explicit upwind scheme (n = 208, E = 0.6 x 10 -‘). 
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Noting that 

det(f + sign C,,) = 0, 

we see that (3.15) represents just one relation which we may write as 

+ 2Yl @u2Sh - @u2% + S!bdPR - PM) I = 0. (3.16) 

It is easily seen that for (M, R.E), we also arrive at (3.16). Hence (3.14) and oniy 
one more relation (3.16) imply (3.13). 

Now, for constant S, we see that (3.14) are 2(J - 1) equations not involving pint 
M, with two boundary conditions (one on the left and one on the right), they 
determine 21 unknowns (on J points: 0, l,..., j, - 1, j, + I,... ,J). A steady 
progressing shock in a shock tube (with consant states on both sides of the shock) 
will satisfy these equations exactly. (3.16) is one relation for the two unknowns at M. 
the actual va!ues of the unknowns can vary, allowing the position of the shock to 
vary with respect to the mesh. 

From the qualitative analysis above, we see that steady-state scheme (3.13) of 
(3.12) admits numerical discontinuous solutions with clear profiles; hence with 
(3.! 2), we can hope to arrive at such steady-state solutions. Numerical resuits 
presented below demonstrate that indeed we do obtain such solutions. 

We note here that in general 

@us), f (Push. = @us), = me5 (3.17) 

so values at M do not have any real physical meaning. M is a mathematical Iran- 
sition point. and we can use (3.17) to identify it. 

4. BOUNDARY CONDITIOM 

From this section on, all quantities will be dimensionless, the reference parameters 
are length L, state 7”, p”, p” =p”/RpO, and a0 = (yRp)“*. (2.7), (2.3) will be 
unchanged, but 

p=pT=p(^r’- l)(H-u2/2), (4.1) 

where following i 141, we take H = 1. 
At the inlet, if the flow is subsonic, one boundary condition is given, say, 

(4.2; 

where subscript s denotes stagnation state and i the inlet. At the outlet, if the flow is 
also subsonic, one boundary condition is given, say, 

Pe =Peov (4.3) 

iP, 42. I ,‘I 
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where subscript e denotes the exit and pea is a given constant; but if it is supersonic, 
then no boundary conditions need to be given. 

For our scheme, additional boundary conditions are needed. We may lengthen the 
duct and take Z/ax of some unknown equal to zero, as is often done in the literature. 
Or better, we can use (3.14a) at the boundaries, pS and pus at the boundaries may 
be obtained from (3.12), which becomes one-sided. If the flow is subsonic, divide and 
get U, calculate T, then from (4.2) or (4.3) we get p. If the outflow is supersonic, we 
leave the pS and PUS as they stand. We will refer to this as the “scheme” boundary 
condition. 

5. NUMERICAL RESULTS 

The first example is taken from [ 15, p. 343 J, the flow field in a shock tube. The 
coordinate axis is taken such that the flow is from left to right and the steady-state 
shock speed is zero. For the sake of simplicity, fixed boundary conditions were 
considered, J= 40, and initial condition such that the values on the left 10 points and 
the right 10 points were the same as those on the respective boundaries, values at 
intermediate points were linear interpolations of these. Both the MacCormack scheme 
and the upwind scheme (3.12) were tested with q = 0.5 (the stability condition being 
q = 0.73); both gave steady-state solutions. It is difficult to determine the shock 
position, but this is not important. What is important is that the upwind scheme led 
to a steady-state discontinuous solution with one point of transition, while the 
MacCormack scheme led to results with oscillation, also its convergence was slower, 
see Figs. 2, 3. 

The second example is taken from [ 141, the flow field in a convergentdivergent 
nozzle. The length of the nozzle is 10, cross-sectional area at the inlet and outlet is 
1.5 and at the throat 1, in between it varies as the sine curve. When p, > 0.8805 the 
flow is all subsonic; when pe < 0.1602, the flow changes smoothly from subsonic at 
the inlet to transonic at the throat to supersonic at the outlet; there are no shocks. 
When 0.1602 < pe < 0.8805, there is a shock to the right of the throat, the flow field 
to the left of the shock is as above, but changes from supersonic to subsonic through 
the shock. The critical mass flow is 0.9150. 

At the start of the numerical experiment, the scheme was not entirely as (3.12), 
S /+ ,,,(G,“* 1 - Gj”) + S,-,[*(G/” - Gy- ,) on the right hand side was one term 
Sj<GJ’ll - Gj”. ,); also in Cj+ ,,2, 

uj4 112 = 
@us>j + Ws>j+ 1 

CPs>j + OS>,+ I * 

Such a scheme was tested for two cases, pe = 0.16 and 0.70, with Ax = 0.5, J= 40. 
The initial condition was as example one. For all boundary conditions considered, the 
numerical result tended to the steady-state solution until II Unfl - U”11 = 
maxi (I q,L ’ - uy + I uyj- 1 - q> < E - 10.. 3, then it started to drift and the mass 
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flow started to decrease, so that the steady-state solution was never reached. After 
changing to (3.12), where the first order differences were consistent with those in the 
second order difference terms, the steady-state solutions were obtained, the results are 
shown in Figs. 4 and 5 (only results near transonic flow and the shock wave are 
shown, the rest coincide with the exact solution on the graph). 

The numerical results with fixed boundary conditions are quite good? and the 
convergence faster. But in actual computation we cannot give such boundar) 
conditions. so we will not discuss this type of boundary conditions in detail. 

It seems that for discontinuous solutions, lengthening the duct (here ?/2x = !I and 
scheme boundary conditions are the same) causes large errors in the numerical 
results; the numerical steady-state mass flow (at all points other than Mj is 
rn,! = 0.9 109, which is within 0.45 % of the exact mass flow. This affects the flow fieid 
more apparently at the throat, as transonic flow is very sensitive to any change in 
mass flow. But by halving the mesh size, Ax = 0.25. J = 801 ?he numerical steady- 
state mass fiow increased to about 0.914. 

In order to save computing time. scheme boundary conditions were considered. 
The numerical results for pe = 0.70 with Ax = 0.5, J= 20, and the initial condition 
being simply linear interpolation of exact boundary values, are shown in Fig. 5. We 
see that the results are quite good. and the number of iterations has decreased for th? 
same error tolerance? as there are now aiso less mesh points. 

FIG. 4. Norzie p,,= 0.16. (-) Exact solution. (A) Fixed boundary condition, Ax = ti.5. q I; 0.5. 
,I =z 320. i: = 0.9 x lo-“; !I = 560, E = 0.1 X 10 ‘. (x) Lengthen the duct b.c.. 4s =0.5. q = C.5. 
,I-592.e:=O.9xlO ‘;n~1408,i:=0.6~10 ‘(nr,=0.9157). 
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FIG. 5. Nozzle p, =0.70. (-) Exact solution. (A) Fixed b.c.. dx = 0.5, q=O.S, n = 592. 
c = 0.8 X IO-‘; n = 896, E = 0.6 x lo-” (m, = 0.9155). (x) Lengthen the duct b.c., Ax = 0.5, q = 0.5, 
rr=928. E=O.~X IO-"; r~= 1536, c:=O.l X 10.’ (m,=0.9109). (A) Scheme b.c., dx=O.5, q=O.5. 
n=480.r:=0.9~10-~(m,=0.916):q=0.7.r1=352,~=0.8x10 1(m,=0.916). 

In the following, only numerical results with this type of boundary conditions and 
with AX= 0.5, E k lo-‘, will be discussed. 

We mention that in the case of pe = 0.70, if q = 0.82 (which is about the stability 
limit), then n - 304. If qj = l/(A+)j then n - 256; that is, with variable df such that 
the Courant number is equal to one, the convergence is faster, which agrees with the 
analysis in IS]. 

We also mention here that the MacCormack scheme is not stable for p, = 0.70. 
To test the upwind scheme further for different shock positions, eight other cases, 

with pe = 0.72, 0.74 ,..., 0.86, were computed. For each case there was at most one 
point of transition, see Figs. 6-14, where only the result at the point of transition is 
shown by . . But the point of transition itself is determined by uiH- ,,* being supersonic 

and Uj,t 112 being subsonic, and expression (5.1) when involving M, cannot always 
represent the value of u midway between the mesh points, see Figs. 7, 12; note 
m, <m, in this situation. Changing to 

l @us)j + bus>j+ 1 
uj+y2=- - 

[ 2 @'>j Qs>j+ I I 
(5.2) 
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FIGS. 6-14. (6) Nozzle p,=O.70 (m,= 0.9158, m,=0.9541). (7)Nozzle p,=O.72 (m,=0.9157. 
m,, = 0.9788). (8) Nozzle p, = 0.74 (m, = 0.9158, m,, = 0.9386). (9) Nozzle pr = 0.76 (m,) = 0.9159. 
m,, = 0.9730). (10) Nozzle pr = 0.78 (m, = 0.9134, m,w = 0.9099). (I 1) Nozzle pr = 0.80 (mu = 0.9159> 
m,,= 0.9607). (12)Nozzle pc= 0.82 (m,=0.9156, m,, = 0.9212). (13)Nozzie pr= 0.84 (m,= 0.9150. 
m,,= 0.9446). (14)Nozzle pr = 0.86 (m,=0.9140, m, = 0.9278). 
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FIG. 15. Nozzle pe = 0.70 sharpening the shock. (o) original mesh, AU = 0.5, q = 0.7, n = 352, (A) 
Ax=0.25, NT 652. (V)dx=0.125. n 1652 +960. 

improved matters; the results at L, M, and R are shown in Figs. 6-14 by 0. Other 
than p, = 0.78, Fig. 10 (the result in this case is really not bad), the values at M are 
between those at L and R, the shock position is within half a mesh width of M, and 
my > in,. If the shock position is exactly halfway between two neighboring mesh 
points, then there is no transition point, the case of 0.82, Fig. 12, is close to this. 

For the profile of the numerical shock to be even sharper, the mesh can be refined 
near the shock, and iteration continued locally; that is, after obtaining results on the 
original mesh, divide the LR interval into four equal parts, the results at the original 
L and R are taken as fixed boundary values on the new I and E points, then the 
computation is continued on the 5 point interval until steady state is reached again. 
This process can be repeated until the shock profile has the desired sharpness. This 
procedure was tested for pe = 0.70, 0.78, 0.86, twice halving the mesh size. The 
results for pe = 0.70 are shown in Fig. 15 (note the scale on the horizontal axis has 
been doubled). The computations for the other two cases were also successful. 

6. THE IMPLICIT UPWIND SCHEME 

To improve the rate of convergence, we will consider the implicit upwind scheme 
in this section. For (3.1) the implicit upwind scheme is 
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we have 

1 
a,=-. 

1Sr 

We see that the larger I is? the higher the asymptotic rate of convergence. Simi!ar to 
the explicit case, (6.1) can be written as a full implicit center-space difference scheme 
with a certain viscosity term. From [8], we know that with this scheme, for iarger r! 
;: Ci Ij i decreases as n increases from the very beginning, which is a desirable property 
for an iterative scheme to have. For our problem, we have, corresponding to (3.12j, 
:he scheme 

-~-f{signC~-~,,i(~~~~-~F;“)+Sj,,~,(G~,.,’-G~~”)~ ,: 

--~igncj”_,,.,[(FI-‘-Fi”‘-:)+s~..:~?(GI”-G:~:)j}=U:‘, (6.3) 

where for the sake of convenience, sign C is taken on the n th level. Simplifying (6.3) 
as in 1 IO], we obtain from (2.8), (2.9), 

By substituting into (6.3) and rearranging we arrive at 

-- + (I + sign CT-:;,)(AJ- r I Sj- ,,2Bj”-,) UT:, 

+ Z+f(Z+SignC:-,,,)(A;+Sj.-i,2B;) 
[ 

+ f (-I + sign Cyl ,,)(A; -I Sj _ 11213”) 
I 

UT + ’ 

+ f (I - sign Cy+ vz)(A;+, + Sj t ,,z B;, 1) 07;; = Uj”. (6.4) 

With scheme boundary conditions (all coefftcients involving vaiues to the left/right of 
the left/right boundary are zero), (6.4) forms a system of linear algebraic equations 
with a block tridiagonal matrix and hence can be easily solved. 
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With difference scheme (6.4), where q = 16, three cases of the nozzle example, 
pe = 0.70, 0.78, and 0.86, were computed. For pe = 0.70, results with m, = 0.9155, 
m !+, = 0.9542 were obtained; for pe = 0.78, m, = m,w = 0.9159; and for pe = 0.86, 
m, = 0.9132, mM = 0.9274. The results plotted on graph are about the same as those 
obtained with the explicit upwind scheme (i.e., Figs. 6, 10, and 14). 

Also q = 32 and 64 were tried for the case pe = 0.70. With q = 64 instability 
occurred; we would expect some limitation on the time step size because of sign C”. 
With q = 32, the number of iterations n = 24, which is a lot less than that with the 
explicit upwind scheme, but the work per level with the implicit scheme is a lot more. 
On the FELIX C-5 12 computer, the explicit upwind scheme with q = 0.82 took about 
10 set, while the implicit upwind scheme with q = 32 took about 4 sec. So we can 
save more than half the computing time with the implicit upwind scheme. 

We point out in passing, that the leapfrog-Dufort-Frankel scheme was also tested, 
but the work per point was a lot more than that of the explicit upwind scheme, so 
that the total amount of work per problem increased. Hence we do not discuss this 
scheme here. 

7. CONCLUDING REMARKS 

This paper presents unsteady schemes (or iterative schemes) for steady-state one- 
dimensional discontinuous solutions starting from the pseudo-unsteady equation. The 
so-called explicit upwind scheme is actually an explicit forward-time, center-space 
difference scheme with an appropriate artificial viscosity term. Using the matrix 
properties of the pseudo-unsteady equation, a sign C depending on the directions of 
the characteristics in the viscosity term is defined; the stability of the scheme, as a 
scheme for pure initial value problems, and the convergence of the scheme, as an 
iterative scheme with appropriate boundary conditions, can be easily analyzed. With 
the scheme boundary conditions, the numerical method consists of embedding a 
steady-state first order difference problem (for smooth solution, (3.14a)) into an 
unsteady, (or pseudo-unsteady) second order (in space) difference problem. The 
viscosity term has an effect in the unsteady process-it speeds up convergence; it has 
an effect in the steady state only in the shock region-it yields numerical shocks with 
at most one point of transition, but it does not influence the solution in the smooth 
region, as seen from (3.14), (3.16). A series of numerical experiments with different 
shock positions demonstrates that this is indeed so. The mesh can be relined locally 
and computation continued locally to make the profile of a discontinuous solution 
sharper. To increase the rate of iterative convergence, the implicit upwind scheme can 
be used, more than half of the amount of work can be saved. 

Whether the one-dimensional schemes presented can be extended successfully to 
more complicated and two-dimensional problems will be investigated. 
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